CH₃O⁺ and C₂H₅O⁺: High Barriers to Isomerisation and Low Barriers to Symmetry-allowed 1,1-Elimination

By RICHARD D. BOWEN and DUDLEY H. WILLIAMS*

(University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW)

Summary Experimental and theoretical evidence is presented to show that the alkoxy cations CH_3O^+ and $C_2H_5O^+$ have surprisingly high barriers to 1,2-hydride shifts to the oxygen atom, but have very low barriers to 1,1-elimination of H_2 from the α -carbon atom.

In earlier work,¹ we have shown that $CH_2 = OH$ undergoes symmetry-forbidden 1,2-elimination of H_2 in a reaction requiring *ca*. 330 kJ mol⁻¹. The high internal energy required to dissociate $CH_2 = OH$ was shown by deuterium labelling^{1,2} to be insufficient to cause any prior isomerisation of the ion. Yet the reported heat of formation of the methoxy cation (CH₃O⁺, 850 kJ mol⁻¹),³ is only 140 kJ mol⁻¹ higher than that of CH₂=OH (710 kJ mol⁻¹).⁴ These data imply that the barrier to the CH₂=OH \rightarrow CH₃O⁺ isomerisation is >330 kJ mol⁻¹, and that the barrier for the reverse reaction CH₃O⁺ \rightarrow CH₂=OH (occurring through the same channel) is >190 kJ mol⁻¹. The latter barrier appears, at first sight, to be a remarkably high one to a symmetry-allowed 1,2-hydride shift which can lead to a

thermodynamically more stable product. In contrast, in the gas phase a primary carbonium ion appears to rearrange to a secondary carbonium ion via a 1,2-hydride shift essentially without activation energy.^{5,6}

However, unambiguous experimental evidence for a barrier to the reaction $CH_3O^+ \rightarrow CH_2=OH$ is available from the work of Hiraoka and Kebarle.⁷ Using a pulsed, high-pressure mass spectrometer source, these workers were able to show that in a thermally equilibrated system, H_2 will add to the formyl cation in a reaction which is exothermic by 16 kJ mol⁻¹. This exothermicity is calculated from the temperature variation of the equilibrium constant for the reaction, *i.e.* the reaction is readily reversible. The adduct is formulated as CH_3O^+ ,⁷ as it clearly must be since 1,2-addition of H_2 to $HC^+=O$ would require an activation energy of *ca.* 220 kJ mol⁻¹, if occurring by microscopic

reversal of 1,2-elimination of H_2 from $CH_2=OH$. Moreover, the reaction $CH_2=OH \rightarrow HC=O + H_2$ could not occur in a system in thermal equilibrium at the temperatures employed (-100 to -165 °C).⁷ Thus, H_2 adds 1,1 to the formyl ion, and dissociation of the adduct requires less energy than

isomerisation to CH2=OH.

The product CH_3O^+ from the above $H_2 + HC^+=O$ reaction has $\Delta H_f \ 810 \text{ kJ mol}^{-1}$, and this should be an accurate value.⁷ If it is indeed a more accurate value than the appearance potential value (850 kJ mol}^-1) quoted earlier, then the barrier ($\geq 230 \text{ kJ mol}^{-1}$) derived for the $CH_3O^+ \rightarrow CH_2=OH$ reaction is even higher than the one quoted at the outset of this paper.

We have sought confirmation of the above deductions by

generating CH_3O^+ and $CH_2=OH$ in the mass spectrometer by ionisation and fragmentation of selected compounds. Since it appears that RCH_2O^+ ions lose H_2 through 1,1elimination with a very small activation energy, precursors of these ions should give very low abundance RCH_2O^+ ions and high abundance RC=O ions. In contrast, $CH_2=OH$ ions generated from RCH_2OH compounds should give large m/e31:29 ratios since the m/e 31 \rightarrow 29 reaction has a very large activation energy. The experimental results are given in the Table.

TABLE TABLE M/e 31:29 ratios in the mass spectra (70 eV) of selected compounds

Compound	Anticipated ion at threshold	m/e 31:29
CH₃CH₂OH	$CH_2 = OH$	11:1
CF ₃ CH ₂ OH	CH₂=ÓH	11:1
CH ₃ CH ₂ CH ₂ OH	CH ₂ =OH	15:1
CH ₃ ONO ₂	$CH_{3}O^{+}$	0.08:1
CH.OCH.	CH_{O}^{+}	$0.08 \cdot 1$

The results strikingly confirm expectations, both CH_3 - +ONO₂ and CH_3OCH_3 producing extremely abundant HC=O ions. Furthermore, while CH_2 =OH loses H_2 in slow reactions (metastable transitions) with a large kinetic energy release² (140 kJ mol⁻¹) since the reaction is symmetryforbidden,¹ the $CH_3O^+ \rightarrow HC=O$ reaction does not give a discernible metastable peak. Presumably this is because the symmetry-allowed reaction (see below) has a small activation energy and a relatively fast rise of the rate constant with energy, such that almost all the dissociations are relatively fast.

Finally, we wished to establish that an acyl ion RC=0, when formed from a compound RCH_2OX , does arise specifically by 1,1-elimination of H_2 from the oxygenbound carbon even where other processes are possible. Ethyl nitrate produces in its 70 eV mass spectrum peaks at m/e 43 (B) and 45 (A) in the ratio 20:1 (Scheme 1). $[1,1-^{2}H_{2}]$ -Ethyl nitrate produces under similar conditions peaks at m/e 43 (B) and 47 (C) in the ratio 12:1, with peaks at m/e 44 and 45 being of negligible abundance relative to that at m/e 43. The $CH_{3}C=0$ ion is therefore produced by

that at m/e 43. The CH₃C=O ion is therefore produced by a specific 1,1-elimination.

$$\begin{array}{c} -\mathbf{e} & -\mathbf{H}_{2} & +\\ \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{ONO}_{2} \xrightarrow{-\mathbf{e}} \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{O}^{+} \xrightarrow{-\mathbf{H}_{2}} & +\\ -\mathrm{NO}_{2} & \\ & (\mathbf{A}), \ m/e \ 45 & (\mathbf{B}), \ m/e \ 43 \\ \mathrm{CH}_{3}\mathrm{CD}_{2}\mathrm{ONO}_{2} \xrightarrow{-\mathbf{e}} \mathrm{CH}_{3}\mathrm{CD}_{2}\mathrm{O}^{+} \xrightarrow{-\mathrm{D}_{2}} & +\\ -\mathrm{NO}_{2} & \\ & -\mathrm{NO}_{2} & \\ & (\mathbf{C}), \ m/e \ 47 & (\mathbf{B}), \ m/e \ 43 \\ \mathrm{SCHEME} \ 1 \end{array}$$

The extremely small barrier to the reaction $CH_3O^+ \rightarrow HC=O + H_2$ is supported by earlier orbital symmetry arguments.⁸ 1,1-Elimination from an sp^3 carbon adjacent to a vacant *p*-orbital is a symmetry-allowed process.

It remains to explain the high barrier ($\ge 230 \text{ kJ mol}^{-1}$) to the reaction $\text{CH}_3\text{O}^+ \rightarrow \text{CH}_2=\text{OH}$. The hydride shift should occur so that bonding on to the vacant *p*-orbital on oxygen is possible in the transition state (1) \rightarrow (2) (Scheme 2). However, this results in the formation of CH_2OH in which the lone-pairs of electrons on the oxygen atom are orthogonal to the vacant π -orbital on the carbon atom (3). Thus (3), formed in this manner, lacks all the π -stabilisa-

tion of CH_2 =OH, but suffers all the destabilisation of the + CH_2OH cation which exists through σ -electron withdrawal by the electronegative oxygen atom; it may plausibly

represent the highest point on the potential surface of the $CH_3O^+ \rightarrow CH_2=OH$ isomerisation. The heat of formation of (3) may be estimated in the following manner. The difference in heats of formation of CH_4 and CH_3^+ is 1155 kJ mol⁻¹;⁹ the analogous change performed on methanol $[CH_3OH \rightarrow (3)]$ should require a similar energy difference if π back-donation to the cationic centre did not occur, nor did

inductive destabilisation by oxygen. Lack of π -donation is precisely the situation which we wish to examine in (3). Inductive destabilisation will however be present in (3); calculations by Pople and his co-workers¹⁰ give an inductive destabilisation of a carbocation of $42 \text{ kJ} \text{ mol}^{-1}$ when the oxygen atom is separated by one carbon atom from the cationic centre, and 13 kJ mol⁻¹ when it is separated by two carbon atoms. In view of the rapid decrease of inductive effects due to an increase in the number of intervening σ -bonds, it seems probable that the inductive destabilisation due to a directly bonded oxygen will not be

less than 100 kJ mol⁻¹. We therefore conclude that ΔH_{f} (3) is $\ge 1055 \text{ kJ mol}^{-1}$. Thus, a plausible transition state for the reversible reaction $CH_2 = OH \rightleftharpoons CH_3 - O$ appears to be energetically inaccessible at the high internal energies necessary to induce the reaction $CH_2=OH \rightarrow HC=O + H_2$; this is in accord with the experimental facts.

We thank the S.R.C. for support.

(Received, 4th March 1977; Com. 198.)

- ¹ D. H. Williams and G. Hvistendahl, J. Amer. Chem. Soc., 1974, 96, 6753. ² J. H. Beynon, A. E. Fontaine, and G. R. Lester, Internat. J. Mass Spectroscopy Ion Phys., 1968, 1, 1.

- ² J. H. Beynon, A. E. Fontaine, and G. K. Lester, Internat. J. Mass Spectroscopy ion Phys., J.
 ³ B. Munson and J. L. Franklin, J. Phys. Chem., 1966, 68, 191.
 ⁴ K. M. A. Refaey and W. A. Chupka, J. Chem. Phys., 1968, 48, 5205.
 ⁵ L. Radom, J. A. Pople, V. Buss, and P. v. R. Schleyer, J. Amer. Chem. Soc., 1972, 94, 311.
 ⁶ F. P. Lossing and G. P. Semeluk, Canad. J. Chem., 1970, 48, 955.
 ⁷ K. Hiraoka and P. Kebarle, J. Chem. Phys., 1975, 63, 1688.
 ⁸ D. H. Williame and C. Huistendehl J. Amer. Chem. Soc. 1974, 96, 6755.

- ⁸ D. H. Williams and G. Hvistendahl, J. Amer. Chem. Soc., 1974, 96, 6755.
 ⁹ J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, 'Ionization Potentials, Appearance Potentials and Heats of Formation of Gaseous Positive Ions,' National Bureau of Standards, Washington, D.C., 1969.
 ¹⁰ L. Radom, J. A. Pople, and P. v. R. Schleyer, J. Amer. Chem. Soc., 1972, 94, 5935.